City of Portsmouth, Virginia
Shoreline Inventory Report
Methods and Guidelines

Prepared By:
Comprehensive Coastal Inventory Program
Center for Coastal Resources Management
Virginia Institute of Marine Science, College of William and Mary
Gloucester Point, Virginia
October, 2008

Special report in Applied Marine Science and Ocean Engineering No. 405 of the Virginia Institute of Marine Science

This project was funded in part by the Virginia Coastal Zone Management Program at the Department of Environmental Quality through Grant # NA07NOS4190178 of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, under the Coastal Zone Management Act of 1972, as amended.
City of Portsmouth - Shoreline Inventory Report

Supported by the Virginia Institute of Marine Science, Center for Coastal Resources Management, Comprehensive Coastal Inventory Program

Prepared by (in alphabetical order)

Marcia Berman
Harry Berquist
Sharon Killeen
Carl Hershner
Karinna Nunez
Karen Reay
Tamia Rudnicky
Daniel Schatt
Dave Weiss

Project Supervisors:

Marcia Berman - Director, Comprehensive Coastal Inventory Program
Carl Hershner - Director, Center for Coastal Resources Management

Special report in Applied Marine Science and Ocean Engineering No. 405 of the Virginia Institute of Marine Science

October, 2008

This project was funded in part by the Virginia Coastal Zone Management Program at the Department of Environmental Quality through Grant # NA07NOS4190178 of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, under the Coastal Zone Management Act of 1972, as amended.
Chapter 1. Introduction

1.1 Background

In the 1970s, the Virginia Institute of Marine Science (VIMS) received a grant through the National Science Foundation’s Research Applied to National Needs Program to develop a series of reports that would describe the condition of tidal shorelines in the Commonwealth of Virginia. These reports became known as the Shoreline Situation Reports. They were published on a county by county basis with additional resources provided by the National Oceanic and Atmospheric Administration’s Office of Coastal Zone Management (Hobbs et. al., 1975).

The Shoreline Situation Reports quickly became a common desktop reference for nearly all shoreline managers, regulators, and planners within the Tidewater region. They provided useful information to address the common management questions and dilemmas of the time. Despite their age, these reports remain a desktop reference.

The Comprehensive Coastal Inventory Program (CCI) is committed to developing a comparable series of reports for each locality within the Maryland and Virginia portions of the Chesapeake Bay Watershed. Each Shoreline Inventory Report is a collection of geospatial data collected to address the management questions of today and take advantage of new technology. The development of the Shoreline Inventory combines the technology of Geographic Information Systems (GIS), Global Positioning System (GPS) and remote sensing. Reports and GIS data are now distributed electronically at this website: http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html by clicking on City of Portsmouth.

1.2 Description of the Locality

The City of Portsmouth is located in the Commonwealth of Virginia, on the western side of the Elizabeth River directly across from the City of Norfolk. The City shares a border with the City of Chesapeake to the east, and borders a very small amount of Suffolk in the northwest corner of the city. Several miles of its shoreline form part of the Port of Hampton Roads, the world’s largest natural harbor and one of the busiest ports in the United State. Given the nature of the City, maritime operations comprise a large percentage of Portsmouth’s employment base (City of Portsmouth, 2008).
In 2006, the U.S. Census Bureau estimated a population of 101,377. The City has a total area of 120.8 km2 (46.7 mi2). From that area, 85.9 km2 (33.2 mi2) is land, and 34.9 km2 (13.5 mi2) is water.

The city’s Chesapeake Bay Ordinance calls for a 10% reduction in non-point source pollution on sites and encourage planting of native vegetation. The designated Resource Protection Area (RPA) is consistent with requirements under the Chesapeake Bay Act. The designated Resource Management Areas (RMA) provides for lands adjacent to the RPA, inclusive of the 100-year floodplain, and non-tidal wetlands (City of Portsmouth, 2008).

1.3 Purpose and Goals

This shoreline inventory is developed as a tool for assessing conditions along the tidal shoreline in the City of Portsmouth. Field data were collected between June and July 2002. Conditions are reported for three zones within the immediate riparian river area: riparian land use, bank and buffers, and the shoreline. A series of maps and tabular data are published to illustrate and quantify results of an extensive shoreline survey. Shorelines of the Elizabeth River and its Western Branch including small tributaries were surveyed for this inventory. Some sections were coded using remote sensing techniques because the shoreline segment was inaccessible by boat.

1.4 Report Organization

This report is divided into several sections. Chapter 2 describes methods used to develop this inventory, along with conditions and attributes considered in the survey. Chapter 3 identifies potential applications for the data, with a focus on current management issues. All products are located online. Chapter 4 describes the map portfolio that accompanies the data.

1.5 Acknowledgments

This work was completed entirely with staff support and management from the Virginia Institute of Marine Science’s Comprehensive Coastal Inventory Program. A host of individuals are acknowledged. In addition to those listed as preparers, the project directors would like to thank the VIMS Vessel Center for their support.
Chapter 2. The Shoreline Assessment: Approach and Considerations

2.1 Introduction

The Comprehensive Coastal Inventory Program (CCI) has developed a set of protocols for describing shoreline conditions along Virginia’s tidal shoreline. The assessment approach uses state of the art Global Positioning Systems (GPS), and Geographic Information Systems (GIS) to collect, analyze, and display shoreline conditions. These protocols and techniques have been developed over several years, incorporating suggestions and data needs conveyed by state agency and local government professionals (Berman and Hershner, 1999).

Three separate activities embody the development of a Shoreline Inventory Report: data collection, data processing and analysis, and map generation. Data collection follows a three tiered shoreline assessment approach described below.

2.2 Three Tiered Shoreline Assessment

The data inventory developed for the Shoreline Inventory Report is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions in the shorezone, which extends from a narrow portion of the riparian zone seaward to the shoreline. This assessment approach was developed to use observations that could be made from a moving boat. To that end, the survey is a collection of descriptive measurements that characterize conditions. GPS units log location of conditions observed from a boat. No other field measurements are performed.

The three tiered shoreline assessment approach divides the shorezone into three regions: 1) the immediate riparian zone, evaluated for land use; 2) the bank, evaluated for height, stability, cover, and natural protection; and 3) the shoreline, describing the presence of shoreline structures for shore protection as well as recreational access. Each tier is described in detail below.

2.2a) Riparian Land Use: Land use adjacent to the bank is classified into one of twelve classes (Table 1). The classification provides a simple assessment of land use, which hints of land management practices that may be anticipated. GPS is used to measure the linear extent along shore where the practice is observed. The width of this zone is not measured. Riparian forest buffers are considered the primary land use if the buffer width equals or exceeds 30 feet. This
width is calculated from digital imagery as part of the quality control in data processing.

2.2b) Bank Condition: The bank extends off the fastland, and serves as an interface between the upland and the shore. It is a source of sediment and nutrient fluxes from the fastland, and bears many of the upland soil characteristics that determine water quality in receiving waters. Bank stability is important for several reasons. The bank protects the upland from wave energy during storm activity. The faster the bank erodes, the sooner the upland will be at risk. Bank erosion can contribute high sediment loads to the receiving waters. Stability of the bank depends on several factors: height, slope, sediment composition and characteristics, vegetative cover, and the presence of buffers to absorb energy impact to the bank itself.

The bank assessment in this inventory addresses four major characteristics of the bank: bank height, bank cover, bank stability, and the presence of natural (beach, marsh) buffers at the bank toe (Table 2). Conditions are recorded continuously using GPS as the boat moves along the shoreline. The GPS log reflects any changes in conditions observed.

Bank height is reported as a range, estimated from the toe of the bank to the top. Bank cover is an assessment of the percent of either vegetative or structural cover in place on the bank face. Natural vegetation, as well as structural cover like riprap is considered “cover”. The assessment is qualitative (Table 2). Bank stability characterizes the condition of the bank face. Banks that have exposed root systems, down vegetation, or exhibit slumping of material qualify as a “high erosion”. Undercutting at the bank toe is also noted. At the toe of the bank, natural marsh vegetation and/or beach material may be present. These features offer protection to the
bank and enhance water quality. Their presence is noted in the field.

<table>
<thead>
<tr>
<th>Bank Attribute</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank height</td>
<td>0-5 ft</td>
<td>from the toe to the edge of the fastland</td>
</tr>
<tr>
<td></td>
<td>5-10 ft</td>
<td>from the toe to the edge of the fastland</td>
</tr>
<tr>
<td></td>
<td>10-30 ft</td>
<td>from the toe to the edge of the fastland</td>
</tr>
<tr>
<td></td>
<td>> 30 ft</td>
<td>from the toe to the edge of the fastland</td>
</tr>
<tr>
<td>bank stability</td>
<td>low erosion</td>
<td>minimal erosion on bank face</td>
</tr>
<tr>
<td></td>
<td>high erosion</td>
<td>includes slumping, scarps, exposed roots</td>
</tr>
<tr>
<td></td>
<td>undercut</td>
<td>erosion at the base of the bank</td>
</tr>
<tr>
<td>bank cover</td>
<td>bare</td>
<td><25% cover; vegetation or structural cover</td>
</tr>
<tr>
<td></td>
<td>partial</td>
<td>25-75% cover; vegetation or structural cover</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>>75% cover; vegetation or structural cover</td>
</tr>
<tr>
<td>marsh buffer</td>
<td>no</td>
<td>no marsh vegetation along the bank toe</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>fringe, extensive, or embayed</td>
</tr>
<tr>
<td>beach buffer</td>
<td>no</td>
<td>no sand beach present</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>sand beach present</td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>no</td>
<td>no Phragmites australis present on site</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>Phragmites australis present on site</td>
</tr>
</tbody>
</table>

Sediment composition and bank slope cannot be surveyed from a boat, and are not included.

2.2c) Shoreline Features: Structures added to the shoreline by property owners are recorded as a combination of points or lines. These features include defense structures, constructed to protect the shoreline from erosion; offense structures, designed to accumulate sand in transport; and recreational structures, built to enhance public or private use of the water (Table 3). The location of these features along the shore is surveyed with a GPS unit. Linear features are surveyed kinematically without stopping the boat. Structures such as docks, and boat ramps are point features, and a static six-second GPS observation is collected at the site. Table 3 summarizes shoreline features surveyed. Linear features are denoted with an “L” and point features are denoted with a “P.” The glossary describes these features, and their purpose along a shore.
Data collection is performed in the field from a small, shoal draft vessel, navigating at slow speeds parallel to the shoreline. To the extent possible, surveys take place on a rising tide, allowing the boat to be as close to shore as possible. The field crew consists of a boat operator, and one data surveyor. The boat operator navigates the boat to follow the shoreline geometry and collects data pertaining to shoreline features. The surveyor collects information pertinent to all land use and bank condition.

Data is logged using the handheld Trimble GeoExplorer III, GeoExplorer XT, or GeoExplorer XH GPS unit. GeoExplorers are accurate to within 4 inches of true position with extended observations and differential correction. Without post processing, these units can achieve accuracies around 3 ft (1 meter). Both static and kinematic data collection is performed. Kinematic data collection is a collection technique where data is collected continuously along a pathway (in this case along the waterway). GPS units are programmed to collect information at a rate sufficient to compute a position anywhere along the course. The shoreline data is collected at a rate of one observation every five seconds. Land use, bank condition, and linear shoreline structures are collected using this technique.

Table 3. Tier 3 - Shoreline Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>riprap</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>bulkhead</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>breakwaters</td>
<td>L</td>
<td>first and last of a series is surveyed</td>
</tr>
<tr>
<td>groinfield</td>
<td>L</td>
<td>first and last of a series is surveyed</td>
</tr>
<tr>
<td>jetty</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>debris</td>
<td>L</td>
<td>can include tires, rubble, tubes, etc.</td>
</tr>
<tr>
<td>miscellaneous</td>
<td>L</td>
<td>composed on non-traditional materials</td>
</tr>
<tr>
<td>pier/wharf</td>
<td>P</td>
<td>includes private and public</td>
</tr>
<tr>
<td>boat ramp</td>
<td>P</td>
<td>distinguishes private vs. public landings</td>
</tr>
<tr>
<td>boat house</td>
<td>P</td>
<td>all covered structures, assumes a pier</td>
</tr>
<tr>
<td>marina</td>
<td>L</td>
<td>includes infrastructure such as piers, bulkheads, wharfs</td>
</tr>
</tbody>
</table>
Static surveys pin-point fixed locations that occur at very short intervals. The boat actually stops to collect these data, and the boat operator must hold the boat against tidal currents, and surface wind waves. Static surveys log 6 GPS observations at a rate of one observation per second at the fixed station. The GPS receiver uses an averaging technique to compute one position based on the 6 static observations. Static surveys are used to position point features like piers, boat ramps, and boathouses.

The Trimble GPS receivers being used include a function that allows a user to pre-program the complete set of features surveyed into what is known as a “data dictionary”. The data dictionary prepared for this Shoreline Inventory Report includes all features described in section 2.2. As features are observed in the field, surveyors use scroll down menus to continuously tag each geographic coordinate pair with a suite of characteristics that describe the shoreland’s land use, bank condition, and shoreline features present. The survey, therefore, is a complete set of geographically referenced shoreline data.

2.4 Data Processing

Data processing occurs in two parts. Part one processes the raw GPS field data, and converts the data to GIS coverages (section 2.4a). Part two corrects the GIS coverages to reflect true shoreline geometry (section 2.4b).

2.4a.) GPS Processing: Differential correction improves the accuracy of GPS data by including other “known” locations to refine geographic position. Any GPS base station within 124 miles of the field site can serve as one additional location. The CORS base station operated by the National Geodetic Survey in Driver, Virginia was used for most of the data processing in the City of Portsmouth.

Differential correction is the first step to processing GPS data. Trimble’s Pathfinder Office GPS software is used. The software processes time synchronized GPS signals from field data and the selected base station. Differential correction improves the position of the GPS field data based on the known location of the base station, the satellites, and the satellite geometry. When Selective Availability was turned off in late spring, 2000, the need to post process data has nearly been eliminated for the level of accuracy being sought in this project.

Although the Trimble GeoExplorers are capable of decimeter accuracy (~ 4 inches), the
short occupation of sites in the field reduces the accuracy to 5 meters (~16 feet). In many cases the accuracy achieved is better, but the overall limits established by the CCI program are set at 5 meters. This means that features are registered to within 5 meters (~16 feet) or better of their true position on the earth’s surface. In this case, positioning refers to the boat position during data collection.

An editing function is used to clean the GPS data. Cleaning corrects for breaks in the data that occur when satellite lock is lost during data collection. Editing also eliminates erroneous data collected when the boat circles off track, and the GPS unit is not switched to “pause” mode.

The final step in GPS processing converts the files to three separate ArcInfo® shape files. These are converted into three coverages: a land use and bank condition coverage (ports_lube), a shoreline structure coverage (lines only) (ports_sstru), and a shoreline structure coverage (points only) (ports_astru).

2.4b.) GIS Processing: GIS processing includes one major step that combines ESRI’s ArcInfo® GIS software, and ERDAS’ Imagine® software. Several data sets are integrated to develop the final inventory products. The processing is intended to spatially correct the new GIS coverages so they reflect conditions at the shoreline, and not along the boat track. All attributes summarized in Tables 1, 2, and 3 are included. A digital shoreline coverage is generated to use as a basemap. For this inventory, a digital shoreline generated from imagery collected as part of 2007 Virginia Base Mapping Program (VBMP) was used as the projects baseline shoreline. This shoreline is not referenced to a tidal datum, but is the most recent available data and developed from a very high-resolution product. The shoreline is extracted from the digital terrain model and then corrected for precise shoreline juxtaposition. The same VBMP imagery is also used for all background imagery used in data processing and map production. The imagery are an important quality control tool for verifying the location of certain landscape attributes, and provide users with additional information about the coastal landscape.

GIS processing corrects the coverages generated from the GPS field data to the shoreline record. These coverages are geographically coincident with the boat track; from where observations are made. They are, therefore, located somewhere in the waterway. Processing transfers these data back to the shoreline basemap so the data more precisely reflect the location being described along the shore.
Data processing uses all three data sets simultaneously: the base shoreline, the post-processed GPS field data, and the ArcInfo coverages. The imagery is used in the background for reference. The processing re-codes the base shoreline with the attributes mapped along the boat track. Each time the boat track data (i.e. GPS data) indicates a change in attribute type or condition, the digital shoreline arc is split, and coded appropriately for the attributes using ArcInfo techniques.

The GIS processing undergoes a rigorous sequence of checks to insure the positional translation is as accurate as possible. Each field coverage; land use, bank condition, and shoreline condition, is processed separately. The final products are three new coded GIS shoreline coverages; ports_lubc (depicting land use and bank cover), ports_sstru (depicting linear structures), ports_astru (depicting point structures).

Quality control and assurance measures require that each coverage be checked twice onscreen by different GIS personnel. Draft hardcopy maps are printed and reviewed in the third and final QA/QC step. When complete, maps and tables are generated for the website.

2.4c.) Maps and Tables: Maps and tables can be viewed or downloaded as pdf files. A color printer is required on the user end. Color maps are generated to illustrate the attributes surveyed along the shore. A four-part map series has been designed to illustrate the three tiers individually.

Plate A describes the riparian land use as color-coded bars along the shore. A legend keys the color to the type of land use. If the line is hatched, there is forest fringe on site. The background imagery is natural color VBMP imagery at a publication scale of 1:12,000. Users should note that the imagery is sometime rotated in order to meet the scale requirements. This means that “north” is not always to the top of the page.

Plate B depicts the condition of the bank. The colors green, red and yellow are used to report if the bank is stable, unstable, or undercut, respectively. The thickness of the line reflects the bank height; where the thickest lines designate the highest banks (> 30 feet). Plate B uses a grey scale version of the natural color image for the backdrop.

Plate C combines recreational and shoreline protection structures in a composition called Shoreline Features. Linear features, described previously (Table 3), are mapped using color coded bar symbols that follow the orientation of the shoreline. Point features use a combination
of colors and symbols to plot the positions on the map. Gray scale imagery is used as a backdrop.

In Plate D a pattern of small colored circles along the shoreline describes any natural buffers present. These are limited to marshes and beaches. Green open circles represent marshes not eroding, and red open circles represent eroding marshes. Solid orange circles indicate eroding sand beaches at the base of the bank, whereas solid purple circles indicate sand beach that are not eroding. It is possible to have beaches and marshes at the same place. The state of erosion is often difficult to detect due to water levels during the survey. For marshes, we look for marsh edge erosion and slumping as a sign of persistent erosion. Beaches are even more difficult. The natural dynamics of beach systems places them in a category of perpetual change. This is particularly true on highly exposed shorelines. For that reason, fetch, is often used as an indicator of stability along sandy shorelines. Moving toward the land, a darker blue line may be illustrated if Phragmites australis is present. This line will be absent if no Phragmites is detected.

For publication purposes the City is divided into a series of maps. Maps are scaled at 1:12,000 for publication at 11x17. Scale will vary if printed at a different size. There are 10 maps for the City of Portsmouth determined by the geographic size and shape of the City. For each map there are four plates (plate 1a, 1b, 1c, 1d, etc.), for a total of 40 map compositions. On the website (Figure 1), an index is provided to help users locate the area of interest and view the orientation of the maps to each other (Figure 2). Each plate can be individually selected and viewed from the plate list along the left hand column of the index page.

Tables 4 and 5 quantify features mapped along the rivers using frequency analysis techniques in ArcInfo. The values quantify features on a plate-by-plate basis. For linear features, values are reported in actual miles surveyed. The number of point features surveyed is also listed on a plate-by-plate basis. The total miles of shoreline surveyed for each plate is reported. A total of 54.7 miles were surveyed in the field. Approximately 31.65 miles of the survey was performed using only remote sensing techniques. This was necessary due to restricted navigation associated with shallow water. These areas include headwaters of small creeks that could not be reached by boat. Since there is plate overlap, total survey miles cannot be reached by adding the total shoreline miles for each plate. The last row of Tables 4 and 5 reports the total shoreline miles surveyed (field and remotely) for the City (86.35), and the total amount of each feature surveyed along the measured shoreline. Table 6 summarizes regions covered by survey date.
Chapter 3. Applications for Management

3.1 Introduction

There are a number of different management applications for which the Shoreline Inventory Reports support. This section discusses several high profile issues within the Commonwealth or Chesapeake Bay watershed. The inventories are data reports, and the data provided are intended for interpretation and integration into other programs. This chapter offers some examples for how data from the Shoreline Inventory can be analyzed to support current state management programs.

3.2 Shoreline Management

The first uses for Shoreline Inventory were to prepare decision makers to bring about well-informed decisions regarding shoreline management. This need continues today, and perhaps with more urgency. In many areas, undisturbed shoreline miles are almost nonexistent. Development continues to encroach on remaining pristine reaches, and threatens the natural ecosystems that have persisted. At the same time, the value of waterfront property has escalated, and the exigency to protect shorelines as an economic resource using stabilization practices has increased. However, protection of tidal shorelines does not occur without incidence.

Management decisions must consider the current state of the shoreline, and understand what actions and processes have occurred to bring the shoreline to its current state. This includes evaluating existing management practices, assessing shore stability in an area, and determining future uses of the shore. The Shoreline Inventories provide data for such assessments. These data are currently being used to determine best strategies to counter erosion based on existing condition. Shoreline Inventories are the backbone for the development of Shoreline Management Plans that integrate data and scientific rationale to strategize best management practices on a reach by reach basis.

For example, land use, to some extent, directs the type of management practices one can expect to find along the shoreline. The land use data, illustrated in plate “a” of the map series illustrates current land use at the time of survey that may be an indicator of shoreline management practices existing or expected in the future. Residential and commercial areas are frequently altered to counter act shoreline erosion problems or to enhance private access to the waterway. In contrast forested or agricultural uses are frequently unmanaged even if chronic
erosion problems exist. Small forest tracks nestled among residential lots have a high probability for development in the future. These areas are also target areas then for shoreline modifications if development does occur. Local governments can do some enhanced and proactive planning if resources allow and these data are readily available. Areas primed for development can be assessed in advance to determine the need for shoreline stabilization, and the type of stabilization that should be recommended.

Stability at the shore is illustrated in plates “b” and “d”. The bank is characterized by its height, the amount of cover on the bank face, the state of erosion, and the presence or absence of natural buffers at the bank toe. Upland adjacent to high, fully covered, and stable banks with a stable natural buffer at the base are less prone to flooding or erosion problems resulting from storm activity. Uplands adjacent to banks of lesser height (< 5feet) are at greater risk of flooding, but if banks are stable with marshes or beaches present, erosion may not be a significant concern. Survey data reveals a strong correlation between banks of high erosion, and the absence of natural buffers. Conversely, the association between stable banks and the presence of marsh or beach is also well established. This suggests that natural buffers such as beaches and fringe marshes play an important role in bank protection. This is illustrated on the maps. Banks without natural buffers, yet classified as low erosion, are often structurally controlled with riprap or bulkheads. Check plate “c” to verify this.

Plate “c” delineates structures installed along the shoreline. These include erosion control structures, and structures to enhance recreational use of the waterway. This map is particularly useful for evaluating new requests from property owners seeking structural methods for controlling shoreline erosion problems. Shoreline managers can evaluate the current situation of the surrounding shore including: impacts of earlier structural decisions, proximity to structures on neighboring parcels, and the vicinity to undisturbed lots. Alternative methods such as vegetative control may be evaluated by assessing the energy or fetch environment from the images. Use this plate in combination with plate “b” which indicates qualitatively the state of erosion made during the survey. The presence of marshes at or in the vicinity of the planned project may indicate the potential for a successful marsh planting to control erosion.

A close examination of shore conditions may suggest whether certain structural choices have been effective. Success of groin field and breakwater systems is confirmed when sediment accretion is observed. Low erosion conditions surveyed along segments with bulkheads and riprap may be indicative that structures have controlled an erosion problem, however, a pre-existing erosion problem can not be verified. The width of the shorezone, estimated from the
background image, also speaks to the success of structures as a method of controlling erosion. A very narrow shorezone implies that as bulkheads or riprap may have secured the erosion problem at the bank, they have also deflated the supply of sediment available to nourish a healthy beach. The structure may actually be enhancing erosion at the base of the structure due to scour and wave reflection. This is a typical shore response, and remains an unresolved management problem.

In the development of a shoreline management plan, all these possibilities are taken into account. Shoreline managers are encouraged to use all three plates together when developing management strategies or making regulatory decisions. Each plate provides important information independent of the others, but collectively the plates become a more valuable management tool.

3.3 Stream Restoration for Non-Point Source Management

The identification of potential problem areas for non-point source pollution is a focal point of water quality improvement efforts throughout the Commonwealth. This is a challenge for any large landscape. Fortunately, we are relatively well informed about the landscape characteristics that contribute to the problem. This shoreline inventory provides a data source where many of these landscape characteristics can be identified. The three tiered approach provides a collection of data which, when combined, can allow for an assessment of potential non-point source pollution problem areas in a waterway. Managers can effectively target river reaches for restoration sites. Below, methods for combining these data to identify problem sites are described.

Grass land and agricultural land, which includes pasture land and cropland, respectively, have the highest potential for nutrient runoff. These areas are also prone to high sediment loads since the adjacent banks are seldom restored when erosion problems persist. Residential, bare, and commercial land uses are also hot spots for non-point source pollution.

To identify areas with the highest potential for non-point source pollution combine these land uses with “high” bank erosion conditions, bare bank cover, and no marsh buffer protection. The potential for non-point source pollution moderates as the condition of the bank changes from “high” bank erosion to “low” bank erosion, or with the presence or absence of stable marsh vegetation to function as a nutrient sink for runoff. Where defense structures occur in conjunction with “low” bank erosion, the structures are effectively controlling erosion at this
time, and the potential for non-point source pollution is reduced. If the following characteristics are delineated: low bank erosion, stable marsh buffer, riprap or bulkhead; the potential for non-point source pollution from any land use class can be lowered.

At the other end of the spectrum, forested and scrub-shrub sites do not contribute significant amounts of non-point source pollution to the receiving waterway. Forest buffers, in particular, are noted for their ability to uptake nutrients running off the upland. Forested areas with stable or defended banks, a stable fringe marsh, and a beach would have the lowest potential as a source of non-point pollution. Scrub-shrub with similar bank and buffer characteristics would also be very low.

A quick search for potential non-point source sites would begin on plate “a”. Identify the “grass” or “agricultural” areas. Locate these areas on plates “b” and ”d” and find those that have eroding banks (in red) without any marsh protection. The hot spots are these sites where the banks are highest (thick red line), so the potential sediment volume introduced to the water is greatest. Finally check plate “c” to determine if any artificial stabilization to protect the bank has occurred. If these areas are without stabilizing structures, they indicate the hottest spots for the introduction of non-point source pollution. Shoreline managers can use these data to target areas for restoration.

3.4 Designating Areas of Concern (AOC) for Best Management Practice (BMP) Sites

Sediment load and nutrient management programs at the shore are largely based on installation of Best Management Practices (BMPs). Among other things, these practices include fencing to remove livestock from the water, installing erosion control structures, construction of living shorelines, and bank re-vegetation programs. Installation of BMPs is costly. There are cost share programs provide relief for property owners, but funds are scarce in comparison to the capacious number of waterway miles needing attention. Targeting Areas of Concern (AOC) can prioritize spending programs, and direct funds where most needed.

Data collected for the shoreline inventory can assist with targeting efforts for designating AOCs. AOCs can be areas where riparian buffers are fragmented, and could be restored. Use Plate “a” to identify forested upland. Breaks in the continuity of the riparian forest can be easily observed in the line segments, and background image. Land use between the breaks relates to potential opportunity for restoring the buffer where fragmentation has occurred. Agricultural tracts which breach forest buffers are more logical targets for restoration than developed
residential or commercial stretches. Agricultural areas, therefore, offer the highest opportunity for conversion. Priority sites for riparian forest restoration should target forested tracts breached by “agriculture” or “grass” land.

Plates “b” and “d” can be used to identify sites for BMPs. Look for where eroding bank conditions persist. The thickness of the line tells something about the bank height. The fetch, or the distance of exposure across the water, can offer some insight into the type of BMP that might be most appropriate. Marsh planting may be difficult to establish at the toe of a bank with high exposure to wave conditions. Look for other marsh fringe on Plate “d” in the vicinity as an indicator that marshes can successfully grow. A riparian forest may include a tree canopy with overhang that could be trimmed to increase sunlight to promote marsh growth. Plate “c” should be checked for existing shoreline erosion structures in place. We can combine this information with the above to determine if structural control is really necessary.

Tippett et.al., (2000) used similar stream side assessment data to target areas for bank and riparian corridor restoration. These data followed a comparable three tier approach and combine data regarding land use and bank stability to define specific reaches along the stream bank where AOCs have been noted. Protocols for determining AOCs are based on the data collected in the field.

As water quality programs move into implementation phases the importance of shoreline erosion in the lower tidal tributaries will become evident. Erosion from shorelines has been associated with high sediment loads in receiving waters (Hardaway et al., 1992), and the potential for increased nutrient loads coming off eroding fastland is a concern (Ibison et al., 1990). The contribution to the suspended load from shoreline erosion is not quantified. Water quality modelers are challenged by gathering appropriate data for model inputs. In Maryland, where there is a complete Shoreline Inventory for each locality, data from the inventory is being used to assess shoreline areas where the introduction of sediment from shoreline erosion is possible. Using data illustrated in plate “c”, Maryland is able to identify areas that have been stabilized versus those that are undefended. They are combining these data with computed shoreline erosion rates to determine the volume of sediment entering the system at points where the shoreline is unprotected.

This type of assessment would be very beneficial in Virginia and may assist in the water quality modeling efforts underway; especially those addressing suspended sediment loads. The shoreline inventory provides a resource of relatively recent data that could assist in defining
areas of high erosion, and potential high sediment loads (e.g. plate “b”). Waterways with extensive footage of eroding shorelines represent areas that should be flagged as hot spots for sediment input. The volume of sediment entering a system is generally estimated by multiplying the computed shoreline recession rate by the bank height along some distance alongshore. Estimated bank height is mapped along all surveyed shorelines in plate “b”. Banks designated as “eroding” and in excess of 30 feet would be target areas for high sediment loads. Plate “a” can be used in combination with Plate “b” to determine the dominant land use practice, and assess whether nutrient enrichment through sediment erosion is also a concern. This would be the case along agriculturally dominated shoreline Table 4 quantifies the linear extent of high, eroding banks on a plate by plate basis. Using the GIS data site-specific calculations can be made.

3.5 Summary

These represent only a handful of uses for the Shoreline Inventory data. Users are encouraged to consider merging these data with other local or regional datasets. Now that most agencies and localities have access to some GIS capabilities, the uses for the data are even greater. While the conditions mapped represent a snap shot in time, CCRM hopes to update these on a regular basis. Unfortunately, this goal is hindered by an absence of recent funds available for data collection. The program continues to seek resources and will modify goals and objectives as necessary.

As new issues emerge for coastal managers, and technology improves, the development of the current Chesapeake Bay Shoreline Inventory Report series and future series will evolve to reflect these changes.
Chapter 4. The Shoreline Inventory

Shoreline condition is described for the City of Portsmouth along primary and secondary shoreline. Characteristics are described for all navigable tidal waterways contiguous to these shorelines. A total of 86.36 miles of the total 88.99 miles of shoreline are described. Approximately, 3.56 miles were coded remotely.

Shoreline Inventory Reports are only available electronically. From this website: http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html users can access digital maps, tables, reports, GIS data, and metadata. The website is organized to encourage users to navigate through a series of informational pages before downloading the data. A map of the Chesapeake Bay region depicting counties and cities is shown (Figure 1). Scroll over the county/city name to link to the completed inventory. There is a list of completed inventories by state below the map. Click on “City of Portsmouth” to access all the information available.

From the City homepage, the user will be presented with a project review and disclaimer explaining data use limitations. The link to “maps” will take you to an index page illustrating the plate boundaries (Figure 2). The index illustrates the distribution of plates geographically. This is useful if you are interested in a specific area. There are 5 links at the bottom of the disclaimer page. These links are self-explanatory.

Once you determine which plate you want, the scroll down menu on the left has links to the four part series for each plate (Figure 3). At the top of the scroll bar Riparian Land Use (plate a) is first. You can scroll down to see links to maps illustrating Bank Conditions (plate b), Shoreline Features (plate c), and Natural Buffers (plate d). The content and details of the four part plate series was described in detail in Chapter 2. The actual map will come up when you click on the plate number. For example, Figure 4 is the riparian land use map for plate 4. Figure 5 is the map illustrating bank conditions for plate 4, Figure 6 shows all the shoreline features for that same area, and Figure 7 the natural buffers associated with that section.
Figure 1. Shoreline Inventory Website
Figure 2. Map index for the City of Portsmouth

You may open any and all plates in the series, but can view only one at a time in most browsers. Tools for zooming and panning should be on the tool bar. The maps can be printed in color at full resolution up to 11x17. Color printers are necessary.

Summary statistics for all data are reported in tables accessed through the “Tables” button on the inventory project page. The link to the GIS data is found on the project page as well. Files are compressed and easily downloaded. The metadata is a separate link that can also be downloaded. Users are encouraged to read the metadata carefully as well as all other information in the disclaimer.
View "Riparian Land Use", "Bank and Buffer Conditions", or "Shoreline Features" for the area of interest by clicking on the corresponding plate. See the index map to the right for plate boundaries.

Riparian Land Use

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plate 6
Plate 7
Plate 8
Plate 9
Plate 10

Figure 3. Scroll down menu for plates
Figure 4. Sample riparian land use map for the City of Portsmouth
Figure 5. Map illustrating bank conditions for plate 4 in the City of Portsmouth
Figure 6. Map illustrating shoreline features for plate 4 in the City of Portsmouth
Figure 7. Map illustrating natural buffers for plate 4 in the City of Portsmouth
Glossary of Shoreline Features Defined

Agricultural - Land use defined as agricultural includes farm tracts that are cultivated and crop producing. This designation is not applicable for pastureland.

Bare - Land use defined as bare includes areas void of any vegetation or obvious land use. Bare areas include those that have been cleared for construction.

Beaches - Beaches are sandy shores that are subaerial during mean high water. These features can be thick and persistent, or very thin lenses of sand.

Boathouse - A boathouse is considered any covered structure alongside a dock or pier built to cover a boat. They include true “houses” for boats with roof and siding, as well as awnings that offer only overhead protection. Since nearly all boathouses have adjoining piers, piers are not surveyed separately, but are assumed. Boathouses may be difficult to see in aerial photography. On the maps they are denoted with a blue triangle.

Boat Ramp - Boat ramps provide vessels access to the waterway. They are usually constructed of concrete, but wood and gravel ramps are also found. Point identification of boat ramps does not discriminate based on type, size, material, or quality of the launch. Access at these sites is not guaranteed, as many may be located on private property. Private and public ramps are denoted where possible. Private ramps are illustrated as purple squares. Orange squares represent public ramps. The location of these ramps was determined from static 6 second GPS observations.

Breakwaters - Breakwaters are structures that sit parallel to the shore, and generally occur in a series along the shore. Their purpose is to attenuate and deflect incoming wave energy, protecting the fastland behind the structure. In doing so, a beach may naturally accrete behind the structures if sediment is available. A beach nourishment program is frequently part of the construction plan.

The position of the breakwater offshore, the number of breakwaters in a series, and their length depends on the size of the beach that must be maintained for shoreline protection. Most breakwater systems sit with the top at or near MHW and are partially exposed during low water. Breakwaters can be composed of a variety of materials. Large rock breakwaters, or breakwaters constructed of gabion baskets filled with smaller stone are popular today. Breakwaters are not easily observed from aerial imagery. However, the symmetrical cuspate sand bodies that may accumulate behind the structures can be. In this survey, individual breakwaters are not mapped. The first and last breakwater in the series is surveyed as a six-second static GPS observation. The system is delineated on the maps as a line paralleling the linear extent of the breakwater series along the shore.

Bulkhead - Bulkheads are traditionally treated wood or steel “walls” constructed to offer protection from wave attack. More recently, plastics are being used in the construction. Bulkheads are vertical structures built slightly seaward of the problem area and backfilled with
suitable fill material. They function like a retaining wall, as they are designed to retain upland soil, and prevent erosion of the bank from impinging waves. The recent proliferation of vertical concrete cylinders, stacked side by side along an eroding stretch of shore offer similar level of protection as bulkheads, and include some of the same considerations for placement and success. These structures are also included in the bulkhead inventory.

Bulkheads are found in all types of environments, but they perform best in low to moderate energy conditions. Under high-energy situations, the erosive power of reflective waves off bulkheads can scour material from the base, and cause eventual failure of the structure.

Bulkheads are common along residential and commercially developed shores. From aerial photography, long stretches of bulkheaded shoreline may be observed as an unnaturally straight or angular coast. In this inventory, they are mapped using kinematic GPS techniques. The data are displayed as linear features on the maps.

Commercial - Commercial zones include small commercial operations as well as parks or campgrounds. These operations are not necessarily water dependent businesses.

Dock/Pier - In this survey, a dock or pier is a structure, generally constructed of wood, which is built perpendicular or parallel to the shore. These are typical on private property, particularly residential areas. They provide access to the water, usually for recreational purposes. Docks and piers are mapped as point features on the shore. Pier length is not surveyed. In the map compositions, docks are denoted by a small green dot. Depending on resolution, docks can be observed in aerial imagery, and may be seen in the maps if the structure was built prior to 1994, when the photography was taken.

Forest Land Use - Forest cover includes deciduous, evergreen, and mixed forest stands greater than 18 feet high. The riparian zone is classified as forested if the tree stand extends at least 33 feet inland of the seaward limit of the riparian zone.

Grass - Grasslands include large unmanaged fields, managed grasslands adjacent to large estates, agriculture tracts reserved for pasture, and grazing.

Groinfield - Groins are low profile structures that sit perpendicular to the shore. They are generally positioned at, or slightly above, the mean low water line. They can be constructed of rock, timber, or concrete. They are frequently set in a series known as a groinfield, which may extend along a stretch of shoreline for some distance.

The purpose of a groin is to trap sediment moving along shore in the littoral current. Sediment is deposited on the updrift side of the structure and can, when sufficient sediment is available in the system, accrete a small beach area. Some fields are nourished immediately after construction with suitable beach fill material. This approach does not deplete the longshore sediment supply, and offers immediate protection to the fastland behind the system.

For groins to be effective there needs to be a regular supply of sediment in the littoral system. In sediment starved areas, groin fields will not be particularly effective. In addition they
can accelerate erosion on the downdrift side of the groin. The design of “low profile” groins was intended to allow some sediment to pass over the structure during intermediate and high tide stages, reducing the risk of down drift erosion.

From aerial imagery, most groins cannot be observed. However, effective groin fields appear as asymmetrical cusps where sediment has accumulated on the updrift side of the groin. The direction of net sediment drift is also evident.

This inventory does not delineate individual groins. In the field, the first and last groin of a series is surveyed. We assume those in between are evenly spaced. On the map composition, the groin field is designated as a linear feature extending along the shore.

Industrial - Industrial operations are larger commercial businesses.

Marina - Marinas are denoted as line features in this survey. They are a collection of docks and wharfs that can extend along an appreciable length of shore. Frequently they are associated with extensive bulkheading. Structures associated with a marina are not identified individually. This means any docks, wharfs, and bulkheads would not be delineated separately. However, if a boat ramp is present it will be surveyed separately and coded as private. Marinas are generally commercial operations. Community docks offering slips and launches for community residents are becoming more popular. They are usually smaller in scale than a commercial operation. To distinguish these facilities from commercial marinas, the riparian land use map (Plate A) will denote the use of the land at the site as residential for a community facility, rather than commercial. The survey estimates the number of slips within the marina and classifies marinas as those with less than 50 slips and those with more than 50 slips.

Marshes - Marshes are be extensive, embayed or fringe marshes. Extensive marshes generally occupy significant acreage. Embayed marshes are similar to pocket or headwater marshes. Fringe marshes are narrow strips of marsh vegetation that extend along the shoreline. In all cases, vegetation must be relatively well established, although not necessarily healthy.

Miscellaneous - Miscellaneous point features represent short isolated segments along the shore where material has been dumped to protect a section of shore undergoing chronic erosion. Longer sections of shore are illustrated as line features. They can include tires, bricks, broken concrete rubble, and railroad ties as examples.

Paved - Paved areas represent roads which run along the shore and generally are located at the top of the banks. Paved also includes parking areas such as parking at boat landing, or commercial facilities.

Phragmites australis - a non-native, invasive wetland plant known to thrive in areas that have experienced disturbance. The plant is prolific and is known to out complete native species. Various types of eradication methods have been used to stop the growth of this plant.

Residential - Residential zones include rural and suburban size plots, as well as multi-family dwellings.
Riprap - Generally composed of large rock to withstand wave energy, riprap revetments are constructed along shores to protect eroding fastland. Revetments today are preferred to bulkhead construction. They reduce wave reflection that causes scouring at the base of the structure, and are known to provide some habitat for aquatic and terrestrial species. Most revetments are constructed with a fine mesh filter cloth placed between the ground and the rock. The filter cloth permits water to permeate through, but prevents sediment behind the cloth from being removed, and causing the rock to settle. Revetments can be massive structures, extending along extensive stretches of shore, and up graded banks. When a bulkhead fails, riprap is often placed at the base for protection, rather than a bulkhead replacement. Riprap is also used to protect the edge of an eroding marsh. This use is known as toe protection. This inventory does not distinguish among the various types of revetments.

Riprap revetments are popular along residential waterfront as a mechanism for stabilizing banks. Along commercial or industrial waterfront development such as marinas, bulkheads are still more common since they provide a facility along which a vessel can dock securely.

Riprap is mapped as a linear feature using kinematic GPS data collection techniques. The maps illustrate riprap as a linear feature along the shore.

Scrub-shrub - Scrub-shrub zones include trees less than 18 feet high, and is usually dominated by shrubs and bushy plants.
References

